AVISO IMPORTANTE


A partir del día 14 de junio de 2015, domingo, este blog dejará de ser actualizado como se ha venido haciendo hasta la fecha. La primera idea fue la de cerrar el blog, pero el deseo que que cuanto aquí se ha publicado pueda seguir siendo útil en el futuro, nos hace que mantengamos abierto el blog. Si tuviera alguna duda o quisiera hacer algún comentario, no tema hacerlo: seguiremos publicando cuantos comentarios se hagan y seguiremos contestando a las dudas que puedan surgir.
Gracias y hasta siempre.
Andrés Guerrero Serrano
-Homeópata-

domingo, 9 de octubre de 2011

Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues.

(Extraído de PubMed.gov)

J Biosci. 2011 Jun;36(2):383-96.

Baquer NZ, Kumar P, Taha A, Kale RK, Cowsik SM, McLean P.

Source

School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India. nzbaquer@gmail.com

Abstract

Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycaemia resulting in defective insulin secretion, resistance to insulin action or both. The use of biguanides, sulphonylurea and other drugs are valuable in the treatment of diabetes mellitus; their use, however, is restricted by their limited action, pharmacokinetic properties, secondary failure rates and side effects. Trigonella foenum-graecum, commonly known as fenugreek, is a plant that has been extensively used as a source of antidiabetic compounds from its seeds and leaf extracts. Preliminary human trials and animal experiments suggest possible hypoglycaemic and antihyperlipedemic properties of fenugreek seed powder taken orally. Our results show that the action of fenugreek in lowering blood glucose levels is almost comparable to the effect of insulin. Combination with trace metal showed that vanadium had additive effects and manganese had additive effects with insulin on in vitro system in control and diabetic animals of young and old ages using adipose tissue. The Trigonella and vanadium effects were studied in a number of tissues including liver, kidney, brain peripheral nerve, heart, red blood cells and skeletal muscle. Addition of Trigonella to vanadium significantly removed the toxicity of vanadium when used to reduce blood glucose levels. Administration of the various combinations of the antidiabetic compounds to diabetic animals was found to reverse most of the diabetic effects studied at physiological, biochemical, histochemical and molecular levels. Results of the key enzymes of metabolic pathways have been summarized together with glucose transporter, Glut-4 and insulin levels. Our findings illustrate and elucidate the antidiabetic/insulin mimetic effects of Trigonella, manganese and vanadium.

No hay comentarios:

Publicar un comentario